JUl

(2 AR N
Cr = @IN (5N
DAVE ROWLAND

TALK:

WHAT CAN C++ LEARN ABOUT
THREAD SAFETY FROM OTHER
LANGUAGES?Y

2023

Q P§ cI)SuMN D O tracktion

O b‘ feks 234 EASY ¢ 7 Deadly sins

azsopell | ‘ .‘ o)

aditus virum

_, 4 ‘ &
il ®. e

066606060

PITCH BEND

OO O OODOD®D

. 1 P
® FlowLFO 2
(@)
2 O
) Fade

ENVELOPE QuTPUT

Fender
Precision

Fender
Telocastor

......

.............

.......

PRISM
SOUND

DT IT T |
e
. tmassesesees

] C) rratieiat . § n
. i
- .

r ~ | 7 \
e T 1 P »..........J,..._

tracktion

A | petpiuupd | | Mot | | prepaimpanuingg § [o
e — ~0 F— g menn ra

sallssnnnnn
DR D
sollsssnnnn
sallssnnann
csasflssnsnnnn
cssessnsnnns
LR~ DR
LR s

- - e

y 1 B 1 b | Jiteer 1 Bty

W

{
ey

‘“l'\ ey,
NNy I

N by
?'ré:"‘"
AL 8) n'cd

C++ and Safety

Timur Doumler
YW @timur_audio !

CppbnSea ‘ Po—
29 June 2023 |

An artist's conception of a sdpemova explosion.
Credit: NASA's Goddard Space Flight Center / ESA / Hubble / L. Calcada

cpponsea.uk . 2023

Of A C-

BQHOV\fmg ‘rouple:; The Ditficulties

- Borrow-Checker

Authors: danakj@chromium.org, lukasza@chromium.org, palmer@chromium.org
Publication Date: 10th September 2021

Introduction

A common question raised when comparing C++ and Rust is whether the Rust borrow checker
Is really unique to Rust, or if it can be implemented in C++ too. C++ is a very flexible language,
so it seems like it should be possible. In this article we’ll explore if it is possible to do borrow
checking at compile time in C++.

Some background on C++ efforts

Many folks are working on improving C++, including improving its memory safety. Clang has
experimental -Wlifetime warnings to help catch a class of use-after-free bugs. The cases it
catches are typically dangling references to temporaries, which makes them a valuable set of
warnings to enable when it is available. But the cases it would solve do not seem to intersect
with the set of cases MiraclePtir is attempting to protect against, which is an effort to frustrate

Merging state and references breaks ownership

If we accept that we can modify the language to make HasMut<T> and HasRef<T> non-
destructible, and to enforce they are not used after a move, then we might consider to go a step
further and do away with these troublesome types.

We might try to instead make the reference types MutRef<T> and Ref<T> not-publicly-
destructible but also movable with a destructive move. Then we can eliminate the HasMut and
HasRef types, and encode those states by the existence of the reference types.

However, that allows a method to steal ownership from a reference. By constructing a Unig<T>
from a MutRef<T>, ownership is taken without being passed a Uniq<T> explicitly. Thus we
actually need the states representing HasMut and HasRef to remain in the original scope of the
Unig<T> they are transitioned from in order to return ownership back to the same scope (though
not the same variable).

Conclusion

We attempted to represent ownership and borrowing through the C++ type system, however the
language does not lend itself to this. Thus memory safety in C++ would need to be achieved
through runtime checks.

owever, the 1anguage does not lend 1tsel?

this. Thus memory satety in C++would ne
to pe achieved through runtime checks:

g g g -
rec \ ' - c/rir . > O ic i 3 ‘ >17-2 ’ - \"viimaoe 0o
' - \J ad [1 L '-‘ Lj = 0 / LIl **/ LN x ~J (_ J h « R & LIS Al k' " / S 11 '- » l~ S " \LG LN JUA ! ! i | ‘v ! (" AL

File Edit View Search Terminal Help File Edit Selection Find View Goto Tools Project

non-void function does not return a value [-Wreturn-type] PR

}
A safety.png

3 warnings generated. : , _
[1%] Linking CXX executable c File Edit View Go Help

[100%] Built target circle « S B B O O 2 I
sean@red:~/projects/circled4/Re
sean@red:~/projects/circled4/Re
[sudo] password for sean:
[100%] Built target circle

safel cxx

Sean Baxter

-- Install configuration: "Rele
-- Installing: /usr/bin/circle
-- Set runtime path of "/usr/bi
sean@red:~/projects/circled4/Re
[sudo] password for sean:
Scanning dependencies of targe

[0%]

Kinds of memory safety and their solutions

Lifetime safety - static

Borrow checking.
/home/sean/projects/circled/src
neration values 'language kind
R s Type safety (nullptr variety) - static

switch(frontend.o

A

A local solution to a non-local problem.

Relocation object model.
1 warning generated. : . .
[1%] Linking CXX executable c Type safety (union variety) - static

[160%] Built target clrcle Choice types and pattern matching.

-- Install configuration: "Rele Thread/data race safety - static
-- Installing: /usr/bin/circle | |
-- Set runtime path of "/usr/bi : Send/sync traits.

' circled /R

sean@red:~/project

Out-of-bounds subscript, divide-by-zero, etc - runtime

[©0%] Panic!

[1%] Linking CXX executable . .
[100%] Built target circle Other unsafe stuff is banned in safe contexts.

- Install configuration: "Rele
- Installing: /usr/bin/circle
-- Set runtime path of "/usr/bi
can@red: 924 x 607 pixels 84.6 kB 100% i

$ xdg-open billion.png
$ | |

T'hread satety
WL 1t C++7

What is Thread Satety?

What is Thread Safety?

A program is thread safe if it is free from data races

« And dead-locks

- A data race is when two threads access the same
memory location when at least one of them is a write

. A thread safe programming language makes it
impossible to express data races

13

Why Thread Safety?

Why Thread Satety”?

Null deref

5.6%
yP€
17.3%

Init
1.0%

Spatial
40.3%

Temporal
34.2%

Breakdown of memory safety CVEs exploited in the wild by vulnerability class.

Source: Retrofitting spatial safety to hundreds of millions of lines of C++
https://security.googleblog.com/2024 /11 /retrofitting-spatial-safety-to-hundreds.htm!

15

https://googleprojectzero.blogspot.com/p/0day.html
https://security.googleblog.com/2024/11/retrofitting-spatial-safety-to-hundreds.html#fn1
https://security.googleblog.com/2024/11/retrofitting-spatial-safety-to-hundreds.html

Why Thread Satety”?

« 5.6% seems small but will grow

. As “low hanging fruit” memory safety improves
- AS machines gain more cores

» As multi-threading becomes easier and more ubiquitous
e.g.std: :execution

- We will see litetime/temporal safety is inextricably to
thread safety

16

Why Thread Satety”?
- Bugs are difficult to spot and difficult to debug

. Problems typically arise long after a data race
OCCUTS

- Even it only 5.6% of bugs are thread related, the
time spent fixing them is likely much higher

Why Thread Satety”?
«5.6% is in Google’s researcn

. In some industries that are inherently real-time (like
audio) this is likely to be much higher

B

Rust

» O 0

Haskell Circle Carbon

Immutability
(Pure value semantics)

Landscape of Approaches

Mutable value semantics
(Local reasoning)

| o

ERLANG

&

Elixer

Message passing
(No shared state)

19

Focus On

[

Sync & Send Actors

Low-level High-level

SR O &

Sync & send

« Protocols/traits that are checked
- A sync object can be safely shared between threads

- A send object can be safely transferred between threads

22

|)

3 SYNC & Send in Swift

The Sendable Protocol

- Notion of “isolation boundaries” between potential thread execution contexts

- Objects can only pass isolation boundaries it they conform to the @Sendab le protocol
- Sendable can be inferred in some cases

- Syncable objects are a special case of Sendable objects
- £E.g.alLockingResource

- No “syncable” keyword

23

open class Thread : NSObject {

public convenience init(block: @escaping @Sendable () —> Void)

RUST

® Sync & Send in .

- send is a “‘marker trait”
« Similar to a C++ “type trait”

. Inferred if:
- A copy can be made (value semantics)
- A borrow can shared (T&)

- NOT mutable borrow (mut T&)

25

© Sync & Send in Circl

- send is a “marker interface”
« Similar to a C++ “type trait”

. Inferred if:
- A copy can be made (value semantics)
. A borrow can shared (const T7)

- NOT mutable borrow (T?)

26

sean@red: ~/projects/circle4/talk o @

File Edit View Search Terminal Help

an owned place is a local variable or subobject of a local variab
le

g is a non-local variable declared at rell.cxx:8:6

Pair g { 10, 20 };

sean@red:~/projects/circled4/talk$ circle matchl.cxx
matchl.cxx:21:10
return match(obj) {

match-expression 1s not exhaustive
.18, .u8, .1i16, .ul6, .u32, .164, .s

sean@red:~/projects/circled4/talk$ circle threadl.cxx
threadl.cxx:22:32
threads”.push back(thread(&entry point, “s, 1i));

error during overload resolution for std2::thread::thread
instantiation: std2.h:1225:9
thread/(where F:static, Args...:static)(F f, Args... args) sa
fe

A

during constraints checking of template parameter Args
template arguments: [
F = void(&) (std2::basic _string<char, std2::allocator<char>>"/
SCC-0, int) safe
Args#0 = std2::basic _string<char, std2::allocator<char>>"/_
Args#l = int

]
constraint: std2.h:1224:26

template<std2::send F, std2::send... Args>

constraint std2::send not satisfied over std2::basic_string<c
har, std2::allocator<char>>%

sean@red:~/projects/circled/talk$ |

—

~/projects/circled4/talk/thread 1.cxx (talk) - Sublime

M
File Edit Selection Find View Goto Tools Project Prefervuiuins I -
4) H n matchl.cxx match2.cxx match3.cxx std2.h hl, |
1 #feature on safety
2 "std2.h"
3 Sean Baxter
4 std2;
5
7 void entry point(string®™ s, int tid) safe {
8 s™->append("More text");
9 /
10 }
11
12 1nt main() safe {
13 vector<thread> threads { };
14
15 {
16 = . |
17 string s = "Hello threads";
8
19 Nnch & 1S .
20 int num threads = 15;
21 (int 1 : num threads)
22 threads”.push back(thread(&entry point, “s
3 } '
24
25 0] | _
26 for(thread™ t : “threads)
27 t*->join();
8 }
| § | Line 25, Column 3 P lifetime (22950) Spaces: 2 C++

SyNnc and send in C++7

scl - Safe Concurrency Library

Sync and send in C++7?

void ’ (otdrrateingt v, dmt

for (int 1 1 s lew 2 (9, mun_threads))
threads.emplace_back ([6s, 1] { entry_point (s, 1); });

1vie

94

tic_a

ert{is
static_sssert{l i

tertypensme T
Lalize constexpe ool is seas v = s sende?s:

Lemplatectypeasm T>

n BT ua L any

opt

—_ (ownst stdirsteingt s, eh btid)

41 1vector<sate_thresd> thresds

95

90

96

tringk s, int t

void entry_point (const
{

// s.agpend ["More text™
prantln {“{} {

- 1
'
tdi ivectoreatss ITAresd> Tareads {)}
6, wen thrasds)|
wd (oiky_peiin, &, 31
o | o Whreade)
)
void e iatrings 5, deb
[
1Ay
[f

: wate: careles
trisg &, int Gl

* igrored: constratars met eaticfiad

1A:26: sete: beceuse ‘std:istrirg &' does not satisfy ‘send’

. h:G6: 16 sate: becauas ivalue' evalsated to falue

8: sate: ene 'int & dees ret setisfy 'send

eadeint Goiivalin' sualuated te fales

Suvneir (“g + Sharz hl‘j
Yl 1IC 1IN U naraple

Lesplatectypeasms T>

telise comstexpe 2ool iy aysc v = is wyneeTeiivalue;

wtypename. .. Arge>

syrcArgens

“typecame

std::shared_ptr to the rescue!

Sync in C++: Sharat

sté:zetomicentd:iatring® 8 = “Belle thresds 7

102

. Arger {arge)
void ¢ a)
{
Ay
i GO 0% e vin
)
stdsivectoresafe_thresd> thresds {)j
stdsima teatring® (“Nello threeds®)
ell threeds
um_thresds
for (it L ads) |
The et y_ymitt, ashe (8], ashe [§11)1

ate_thress,hild;
tesplatectypenase F, ven

nate; Decause 'staiishared gtr<staiistrisgs &' dies mat satisty
. A

*send

93

AUsers/gave/CLienPrajects/ sync_serd/sal
o’

98

cosst ist mam tiresds = 13;

for (imt &

sum_threads ||
Earaads .]

_threas, hi341261 mate: because ‘steiistring &' dees sot satisfy
o

u templatectypesane F, send... Argas

ers/save/CLsoaPraject
“ temp

sync_serd/sate_thress, b
ectyparane |, send... Arg

nate: and int &' does nat satisty “send

-yl ate<hypen

o: Because ‘st
send... Argse

tahared strestd:istrings &' daes nat satisfy ‘send

wold estry poirt |stdristered prr<wynchrcoired value<stdsistringss syac

(La) (asaas o) ¢

nived_valuab) = deletar

aizes valie Moperator=(coast

d_valces) = da

templatestypesame. .

o owal (etdait

typeasma... Typas>
Typesé.. > apply od_value<ipes
P

103

99

112

stroct ix sesscayn

: atd:itros type {h

vasa y_poiat [etdsisbared prresyschronized_valeecstdi iatriags ayne
[
spply (1tid) (autes u) {
s.appent ("H7))
seprintin 0) "
reture »
b
“aysc_s)

104

AT

We need a way to express an object
can safely be shared between threads

zed valoees (“Belle

s (0, oum threads|)
threed (entcy point, awte

113

How far have we got in C++7?

andord syncronized_value

109

void entry_point {shared_ptr<mutex<string>> data, int thread_id) safe
aute lock _guard = data-»lockl);

string™s = lock_guara™.borrowl);
s*-»agpend ["A");

printin l(es);

int main () safe

aute shared data = shared ptrasutex«<string tmake(string ("Helle threads™));

wector<thread> thresds (};

77 Lawnch a1l threads.

const int nue threads « 1

for(int i onum _threads)
threads®. push_back(thread (Sentry paist, copy shared data, i});

119

114

120

« Not bullet proof

ng’
» Not beginner friendly

» Not default

110

Hello threadsA @

Hello threadsAA 1
Hello threadsAAA 2
Hello threadsAAAA 3
Hello threadsAAAAAN 4
Hello threadsA A 12
Hello threadsA A
Hello threadsA A A
Hello threadsA A

Hello threadsA A

Hello threadsA

Hello threadsA/ AM
Hello threadsAAAAAA
Hello threadsAAAAAA
Hello threadsAAAAAA

Process finished with exit code @

o Oefiaision 5o dia oes. N3 daxtiocks. No races 1or eutemal resowres (e £, for opening 3 e)
rwerscn, ety Chated by eacess Contention on &

+ Observesion The concurmency profle 5 Dameetly The Ieast mansse of The Suggected profes. It
s rexceived essentialy 10 mork Spaciably reianed 1 profies. Dut COnCTency ol have
e coments (ncudhag Uhe Core Gaideine: and MISRA++) 50|
Bal werk

Thveods prefer thresd o thresd 1o get fewer wcepe rebatd proerms.

Dangling paveerry c1ikder a Rhvasd a contare ard a3ph TV Uneal ruben for reecerte
raabaron (5390

Aliosing: waticaly Cetect 3 pOirtes 5 pasied 35 AnoTher theedd. For an nirl versise,
IR il QU LTINS 50 SOTY MINGUANION) A0 trrwal ool Sows. 11
POl 0% 21 225G G be Jeteciod SGH N we eed 19 6ECt 160 Comples
code Definng 100 Compkn” & essentio, o we wil sufler POt by prodlems becasse
of compher Incomauttimes. Se “Piow snuyits” [4)
Iewoidatian: Lne LVGe_pLr 472 Contanen wiIout I
5 pant inforration becween the
Mttty Prafer 33 s (and beep| poiners 1o const

Symchvosisrion: s sopad_lock % lesses the hasce of dexdiock 0ok a0 the
Dossubty of SIYRCally BETING 263ses i mare T30 0% ed] 10 Fistable B3t
evionce the ute of TCHO CaHD 0 sccess IMTUR Iherm. Use sdeue_str combred
wih gronecting ag % s Lewts

ron |04 gul=gyn_srray|

115

121

111

e red 10 Jook 31 bock e progravening

116

=1 Ll propriot Coda style Madernsaler bbraries
unsafe surloce
. clong Gdy cppcoreguidel ines-pro—e
Compler wornings “Wall/extra/pedant ic
- g (C++297) A t
] fropy
U £ 18 Y Complar fogs LIBOPP HARDENING MODE OF B/
FAST=1
- Tl Ovkugpng AwnyUBson
. necked Cee? Tests Tsan
e Static analyer

express lif

JI O i

arops) we

fs

117

Can Audio Programming be Safe?
David Rowland

© X @drowaudio

? ?
Quest’ ons: Slides/video:

agrowaudi, gthub./presentations

123

class safe thread

{
public:
template<typename F, [send... Args}
safe thread (F&& f, Argsé&&... args)
thread (std::forward<fF> (f), std::forward<Args> (args)...)
{
// N.B. We can't constrain F to the concept due to recursion of is move constructable
// So we have to statically assert it
static assert (send<F>);
}
safe thread (safe thread&& other)
thread (std::move (other.thread))
{
}
private:

std::jthread thread;
}i

30

G Send in C++ Moved between threads

template<typename T,

safe thread (F&& f, Argsé&&... args)
: thread (std::forward<F> (f), std::forward<Args> (args)...)

static_assert (send<F>);

{

}

template<typename T> statJ:.c_assert(%s_send_v<c.:onst int>);
j : d: :bog , static_assert(1is send v<int>);
(std::is_1lvalue_reference v<T> static _assert(is send v<inté&é&>);

|| std::is_pointer_v<std::remove_extent_t<T>> static assert(is send v<int>);
is lambda v<T>)) B N

static_assert(! 1s send v<inté&>);

std::1s_move_constructible_v<T> . . .
(I = A static _assert(! 1s send v<int*&>);

|| (is_function_pointer_v<std::decay_t<T>> . . .
& ! std::is_member_function_pointer v<T>))>|/static_assert(! 1s_send v<const inté&>);

{}: static assert(! 1s send v<const int*&>);
static_assert(! 1s send v<std::string&>);

template<typename T> static assert(! is send v<const std::string&>);

concept send = 1is_send<T>::value; static assert(! is send v<std::string*&>);

static assert(! 1s send v<const std::string*&>);

31

[sT send?

N

'S move s function
constructible? oointer?

s lvalue

reference? s pointer? s lambda’?

Y Y Y Y

s member
function pointer?

X X

X

G Send in C++ Moved between threads

e No

- |value references

- Object pointers

- Lambdas

- May be referenced outside this thread boundary
e Only

- rvalues

- Non-member function pointers

« Can be sure no data is shared

34

e between threads

C- Sync in C++ Sharab.

template<typename T>

. static assert(! 1s sync v<int>);
struct 1s sync : std::false type {}; static assert(! is sync v<inté&>);
static_assert(! 1s sync v<const inté&>);

template<typename T>

static assert(! 1s sync v<std::string&>);
static_assert(! 1s sync v<const std::string&>);
static assert(is sync v<std::atomic<int>>);

struct 1s sync<std::atomic<T>> : std::true type {};

template<typename T>
inline constexpr bool i1s sync v = 1s sync<T>::value;

template<typename... Args>

concept sync = (1s_sync<Args>::value && ...);

35

& What types are sync?
e std::
e std::atomic

. Trivial types only

e synchronized value (P0290)
- Wraps a type with a std: :mutex
- Automatically locks during access

- Works with any type

36

Gasynchronized_value

template<typename Type>
class synchronized value

{
public:
synchronized value(const synchronized value&) = delete;
synchronized value &operator=(const synchronized value&) = delete;
template<typename... Args>
synchronized value(Argsé&&... args)
val (std::forward<Args> (args)...)
{}
template<typename Fn, typename Up, typename... Types>
friend std::invoke result t<Fn, Upé&, Types&...> (Fn&&, synchronized value<Up>§&,
synchronized value<Types>&...);
private:
ype vay
Type val;
s template<typename T>
struct is sync<synchronized value<T>> : std::true type
{}i

37

template <typename T>
struct is send : std::bool constant<
(! (std::1s lvalue reference v<T>
|| std::is pointer v<std::remove extent t<T>>
|| is lambda v<T>))
& &
(std::1s move constructible v<T>
|| (is function pointer v<std::decay t<T>>
&& ! std::1s member function pointer v<T>)
|| is sync v<T>)>

{};

struct i1s send<std::shared ptr<T>> : |std::true type

{}s

38

- Good

std:

std:

- Bao

std:

std:

:shared ptr<std::atomic<int>>

:shared ptr<int> x

:shared ptr<std::string> x

:shared ptr<synchronized_value<std::string>>

39

void entry point (std::shared ptr<synchronized value<std::string>> sync s} int tid)

{

}

apply ([tid] (auto& s) {
s.append ("&");
std::println ("{} {}", s, tid);
return s;

o

*sync _s);

int main()

{

auto s = std::make shared<synchronized value<std::string>> ("Hello threads");

std: :vector<safe thread> threads { };

const int num threads

15;

for (int 1 : std::views::d A
threads.push back (safe thread (entry point,]l auto (s), auto (1))));

40

Prop.

ems: Nested .

Jointers

struct node

{

node* next;
node* prev;

}i

void entry point (std::shared ptr<synchronized value<ster—srstring>> sync s, int tid)

{
apply ([tid]
[/ ...
return s;
o
*sync _s);
}
int main()
{
[/ ...
auto s =
[/ ...

(auto& s) {

std: :make shared<synchronized value<stés++string>> (' 'Hello threads");

41

e _

Propblems: this Pointers

threads.push back (safe thread (entry point, auto (s), auto (1)));

threads.push back (safe thread ([this]

F

memberFunction();

})

42

Problems: Global Pointers

void set global string (std::string*);

void entry point (std::shared ptr<synchronized value<std::string>> sync s, int tid)

{
apply ([tid] (auto& s) {

set global strinﬁ ‘&szi
// ...

return s;

b
*sync _s);
h
int main()
!
[/ ...
auto s = std::make shared<synchronized value<std::string>> ("Hello threads");
[/ ...

43

Propblems: L.eaked Pointers

auto widget = std::make unique<Widget> (args);

auto widget Etr = widget.getsz;

threads.push back (safe thread (entry point, std::move (widget)));
I —

widget ptr->do stuff();

44

@ _

Problems: Ssummary

- Nested pointers
- this pointers
- Global pointers

. Leaked pointers

How far have we got in C++7

Safer. but nc

Ow rar have we got in C++7

« Used an unenforceable safe thread class

- Used a non-standard synchronized_value class
- Had to add our own type trait for it

- Did a lot of fighting with the compiler

- Template instantiation

- Similar to “fighting the borrow checker”?

- Added a lot of overnhead to our code

- Atomic reference counting

- Mutex locking

47

Ow rar have we got in C++7

 Not bullet proof
- Not beginner friendly

« Not default

void entry point (std::shared ptr<synchronized value<std::string>> sync s, int tid)

{
apply ([tid] (auto& s) {

s.append ("&");
std::println ("{} {}", s, tid);

return s;
b
*sync_s);
}
int main()
{
auto s = std::make shared<synchronized value<std::string>> ("Hello threads");
std::vector<safe thread> threads { };
const int num threads = 15;
for (int i std::views::iota (0, num threads))
threads.push back (safe thread (entry point, auto (s), auto (1)));
}

void entry point (shared ptr<mutex<string>> data, int thread id) safe

{
auto lock guard = data->lock();

string”s lock guard” .borrow();

SA—>append (n{‘,n);

println (*s);

}
int main () safe
{
auto shared data = shared ptr<mutex<string>>::make(string ("Hello threads"));
vector<thread> threads { };
const int num threads = 15;
for(int 1 num _threads)
threads” .push back(thread (&entry point, copy shared data, 1));
}

49

C

apply ([tid] (auto& s) {

return s:
},
xdata):

auto lock_guard = data->lock();

string”™s = lock_guard”.borrow();

auto (s), auto (i))); copy shared_data, 1));

50

®& Same examp

RUST

use std::sync::{Arc, Mutex};
use std::thread;

fn entry point(data: Arc<Mutex<String>>, thread id: 132) {
let mut guard = data.lock().unwrap();

guard.push_str("é@");
println! ("Thread {}: {}", thread id, *guard);

pub fn main() {
let shared data

let mut threads = Vec::new();
const NUM THREADS: 132 = 15;

for i in 0..NUM THREADS ({
// Clone the Arc for this thread
let data clone = Arc::clone(&shared data);

// Spawn the thread and store its handle
let handle = thread::spawn(move || {
entry point(data clone, 1);

})i

threads.push(handle);

for handle in threads {
handle. join() .unwrap();

Arc::new(Mutex::new(String::from(" "Hello threads")));

51

& So

use std::sync::Mutex;
use std::thread;

fn entry point(data: &Mutex<String>, thread id: 132) {

let mut guard = data.lock().unwrap();
guard.push str("");
println! ("Thread {}: {}", thread id, *guard);

}

pub fn main() {
let shared data = Mutex::new(String::from("Hello threads"));
const NUM THREADS: 132 = 15;
// Use scope to ensure threads don't outlive our data
thread: :scope(|scope| {
let mut threads = Vec::new();

for 1 in 0..NUM THREADS ({
let local data = &shared data;
let handle = scope.spawn(move || {
entry point(local data, 1);

)i

threads.push(handle);
}

for handle in threads {
handle.join() .unwrap();

}
})i

e example in Rust (with borrows)

Key changes made in this version:

1. Removed Arc and now using direct references
(8Mutex<String>)

2. Added thread: : scope to ensure threads don't outlive
the borrowed dato

3. Changed the thread spawning to use scoped threads
via scope. spawn

4. Simplitied the function signature of entry_point to
take a reference

5. No more need for explicit cloning since we're using

‘eferences

52

& S

e example in

use std::sync::Mutex;
use std::thread;

fn entry point(data: &Mutex<String>, thread id: 132) {
let mut guard = data.lock().unwrap();

guard.push_str("?\");
println! ("Thread {}: {}", thread id, *guard);
}

pub fn main() {
let shared data = Mutex::new(String::from("Hello threads"));

const NUM THREADS: 132 = 15;

// Use scope to ensure threads don't outlive our data
thread: :scope(|scope| {
let mut threads = Vec::new();

for 1 in 0..NUM THREADS ({
let local data = &shared data;
let handle = scope.spawn(move || {
entry point(local data, 1);

)i

threads.push(handle);

for handle in threads {
handle.join() .unwrap();

})i

More efficient (no atomic reference counting)
Cleaner code (no clone operations)
Compile-time guarantees about data litetime

Still maintains thread safety through the Mutex

Rust (with borrows)

This version has several advantages:

53

Without a way to properly express li;

‘etimes (In

terms of borrows/relocations/arops) we dont

get the same level of

L

NYell

ety and pert

Qrrrarice

Back to C+-

void entry point (std::shared ptr<synchronized value<std::string>> sync s, int tid)

{

}

apply ([tid] (auto& s) {
s.append ("&");
std: :println ("{} {}", s, tid);
return s;

}

*sync s);

int main()

{

auto s = std::make shared<synchronized value<std::string>> ("Hello threads");

std::vector<safe thread> threads { };

const int num threads 15;

for (int 1 : std::views::iota (0, num threads))
threads.push back (safe thread (entry point, auto (s), auto (1)));

55

@ _

Problems: Ssummary

- Nested pointers
- this pointers
- Global pointers

. Leaked pointers

@ C++ Reflection to the |

e Recursive Sync/Send Type Trait Checking
- Check members of types are all sendable

« Check members of lambdas are all sendable

Rescue’

struct node

{

node* next;
node* prev;

}i

std::shared ptr<syncronized value<node>>();

X

auto node =

safe threads.emplace back ([this, node]

std: :make shared<node>();

X

memberFunction();

});

{

S/

consteval auto is_send_type (std::meta::info type) —> bool

{

type = remove_cv (type);

//
if

//
if

//
if

//

//

Non—-member function pointers
(is_pointer_type (type)
&& is_function_type (remove_pointer (type))
& ! is_member_function_pointer_type (type))
return true;

Llvalue refs and pointers
(is_1lvalue_reference_type (type)

|| is_pointer_type (remove_extent (type)))
return false;

POD built-in types
(is_arithmetic_type (type))
return true;

Recursive class/struct/lambda members
(is_class_type (type))

return std::ranges::all_of(nonstatic_data_members_of(type),
std::meta::1nfTo

{
});

return is_send_type (type_of(d));

Construct from rvalue ref
(is_rvalue_reference_type (type)

&& is_constructible_type (type, { remove_reference (type) }))

return true;

return false:

template<typename T>

inlina ranctovnr hnnl ic cend v = ic cand (AAT) s

template<typename T>
tejconsteval auto is_send() —> bool

colt _
if (is_send_type (~*T))

recurn tctrue,

return 1s_sync_v<T>;

¥

template<typename T>
inline constexpr bool is_send_v

template<typename T>
concept send = 1is_send_v<T>;

is_send<T>();

58

struct node

{

nodex prev;
nodex next;

b

| is_send_v<node>);

struct type

1
type()
1

int 1

'is_send_v

0:

1s_send_v

1 is send_v

[1 (int) {};

[i] (int) {};

[&i] (int) {};

auto n = std::make_shared<node>();

l 1s_send_v

l 1s_send_v

l 1s_send_v

l 1s_send_v

}

void run() {}

&

[this] { run(); };

[this, n] { run(); };

[&n] {};

[n] {};

SIS

& Problems: Summary
- Nestea-potnters
thi |

- Global pointers

. Leaked pointers

Global pointers

void set global string (std::string*);

void entry point (std::shared ptr<synchronized value<std::string>> sync s, int tid)
{
apply ([tid] (auto& s)

set global string (&s);
[/ ..

return s;

}

*sync s);

®

fn entry point(data: &Mutex<String>, thread id: 132) {
let mut guard = data.lock().unwrap();
guard.push_str("%");
println! ("Thread {}: {}", thread id, *guard);

61

y Wrapping with Re:

[)
|

cction

« P2996 - Reflection for C++26
Accepted

- P3294 - Code Injection with Token Sequences
Hopeful for C++29 &

« PO707 - Metaclasses
Proposed /!

62

metaclass proposed syntax

'

mplicit synchronized_value

{
public:
person() = default;
std::string get_first_name() const
{
return first_name;
s
void set_first name (std::string _view new_first)
{
first _name = new_fTirst;
s
// Repeat for last_name
private:
std::string first_name, last_name;
Fi

class person

{
public:
person() = default;
std::string get_first _name() const
{
return apply ([] (auto& p) {
return p.get_first_name();
Fy
person_internal);
I3
void set_first _name (std::string_view new_first)
{
apply ([&] (auto& p) {
p.set_first_name (new_first);
}
person_internal);
I3
// Repeat for last_name
priyate:

struct __person;

mutable synchronized_value<__person> person_;

63

4
o

ppcon

The C++ Conference

= n.org

Video Sponsorship Provided B

think-cel*

Now 1n EDG...

info ret = ""{};
for (info mem

Pak = Al
\tokens(ret)

virtual [:\(return_type_of(mem)):]
\id(identifier_of(mem)) (\tokens(parameter_list_of(mem))) = 0;

5i
¥
// ——— reporting compile time errors not yet implemented —-—-
// else if (is_variable(mem)) {
// print B .
/7 v ;7 e« consteval void interface(std::meta::info proto) 1

h

return ret;

std: :string_view name = identifier_of(proto);
queue_injection(""{

class \id(name) {

public:

)

godbolt.orqg/z/fex55gqg50

consteval auto make_interface_functions(info proto) -> info {

: members_of(proto)) {
if (is_nonspecial_member_function(mem)) {

3

\tokens(make_interface_functions(proto))
virtual ~\id(Cname)() { }

mplicitmutex

class person
{
public:
person() = default;
std::string get_first_name() const
{
return first_name;
}
void set_first name (std::string _view new_first)
{
first _name = new_fTirst;
}
// Repeat for last_name
private:
std::string first_name, last_name;
Fi

OC.

INg

class person

{
public:
person() = default;
std::string get_first_name() const
{
std::scoped_lock _ (mutex);
return person_.get _tirst_name();
I3
void set _first_name (std::string_view new_first)
{
std::scoped_lock _ (mutex);
person_.set_tirst_name (new_first);
I3
// Repeat for last_name
private:
class Derson;
std: :mutex mutex;
mutable _ person person_;
¥
template<>

struct is_sync<person> : std::true_type {};

65

mplicit shared_mutex locking

class personl(shared_mutex)

{
public:
person() = default;
std::string get_first_name() const
{
return first_name;
}
void set_first name (std::string _view new_first)
{
first _name = new_fTirst;
}
// Repeat for last_name
private:
std::string first_name, last_name;
Fi

class person

{
public:
person() = default;
std::string get_first_name() const
{
std::shared_lock _ (mutex);
return person_.get _tirst_name();
I3
void set _first_name (std::string_view new_first)
{
std::unique_lock _ (mutex);
person_.set_tirst_name (new_first);
I3
// Repeat for last_name
private:
class Derson;
std::shared mutex mutex;
mutable _ person person_;
¥
template<>

struct is_sync<person> : std::true_type {};

66

void entry point (std::shared ptr<synchronized value<std::string>> sync s, int tid)
{
apply ([tid] (auto& s) {
s .append (”(B”);
std::println ("{} {}", s, tid);
return s;
}o
*sync _s);
}
int main()

{

auto p

[/ ...

std: :make shared<synchronized value<std::string>> ("Hello threads");

void entry point (std::shared ptr<person> p, int tid)
{
apply ([tid] (auto& s) {
s.append ("®");
std::println ("{} {}", s, tid);
return s;
}o
*sync _s);
}
int main()

{

auto p = std::make shared<person> ("Hello threads");

void entry point (std::shared ptr<person> p, int tid)

{
p->set first name ("&");
std::println ("{} {}", p->get first name(), tid);
}

int main()

{

auto p = std::make shared<person> ("Hello threads");

[/ ...

69

Propblems: L.eaked Pointers

auto widget = std::make unique<Widget> (args);
auto widget ptr = widget.get();
threads.push back (safe thread (entry point, std::move (widget)));

widget ptr->do stuff();

void entry point (std::shared ptr<person> p, int tid)

{

auto person ptr = p.get();
e

}

70

C: Wrapped std: ishared ptr

arc metaclass

'

class personi(arc)

{
public:
person() = default;
std::string get_first_name() const
{
return first_name;
s
void set_first name (std::string _view new_first)
{
first _name = new_fTirst;
s
// Repeat for last_name
private:

std::string first_name, last_name;

b

class person

public:

person() = default;

std::string get_first name() const

{
}

return person_->get_first_name();

void set_first _name (std::string_view new_first)

{
}

person_—>set_first_name (new_first);

// Repeat for last_name

private:

class __person;
std::shared_ptr<__person> person_;

71

o o |

&) .00k familiar? Swift classes

{

class Person

private var first_name: String = ;
private var last_name: String = "";

func get _first name() —> String

{
}

return first_name

mutating func set _first _name (new first: String)

{
}

first name = new _first;

// Repeat for last_name

class person(arc)

{
public:
std::string get _first _name() const
{
return first _name;
I3
void set_first name (std::string_view new_first)
{
first _name = new _first;
I3
// Repeat for last_name
private:

std::string first_name, last_name;

&

712

G Combined

arc & mutex metaclass

'

class person|(mutex, arc)

{
public:

[/

void entry point (std::shared ptr<person> p, int tid)

{

p.set first name ("&H");
std: :println ("{} {}", p.get first name(), tid);
}

int main()

{

auto p = std::make shared<person> ("Hello threads");

[/ ...

void entry point (person p, int tid)

{

p.set first name ("&H");
std: :println ("{} {}", p.get first name(), tid);
}

int main()

{

auto p = person ("Hello threads");

[/ ...

& Swift class: Breakin g Cyc.
. Cyclic references cause memory leaks

- References in Swift are strong by default

- To break a cycle weak references can be usead

- These are n1led when the last strong reference is destroyed

- Must be checked before dereferencing

var p = Person()
p.set first name (new_first: "Dave")
print (p.get first name())

weak var p2 = p
p2?.set first name (new first: "John")

o

76

GBVV&mxxxistd::

class person
{
public:
class weak ref
{
public:
weak_ref() = default;
weak_ref (person p)
1 person_ (p.person_) {}
std::optional<person> get() const
{
if (auto valid = person_.lock())
return person (std::move (valid));
return std::nullopt;
priyate:
std::weak_ptr<__person> person_;
¥
//... rest of class as before
private:
person (std::shared_ptr<_ person>&& other)
: person_ (other) {}
¥

weak _ptr

person pl;
//... do stuff with pl

: tweak_ref p2; // create uninitialised
// assign from strong-ref

if (auto valid_person = p3.get())
std::println ("p3 {}", valid_person->get_first _name());

p2.get().transform ([] (auto valid_person) {
valid_person.set_first _name (“John");
return valid_person;

r);

77

eJ Swift structs

- Value semantics

- Two instances of a struct have distinct objects
- Are @Sendab Le implicitly it all members are @Sendab le
. Scalar (pod etc.) and self-contained objects (like String) are @Sendab le

- Can be implemented with copy-on-write for efficiency

78

&) Swift structs

struct Person

{

private var first_name: String = "";
private var last_name: String = "";

mutating func set _first _name (new _first: String)

{

first name = new _first;

s
func get _first name() —> String
{
return first name
s

// Repeat for last_name

struct person

{
std::string get _first _name() const
{
return first_name;
I3
void set_first name (std::string_view new_first)
{
first _name = new_first;
I3
// Repeat for last_name
private:
std::string first_name, last_name;
b

79

C- Copy on Write

C.O.W. metaclass

v

struct person|(cow)

{
std::string get_first_name() const
{
return first_name;
}
void set first _name (std::string_view
{
first _name = new_first;
}
// Repeat for last_name
private:
std::string first_name, last_name;
b

struct person

{

std::string get first name() const {
return person ->get first name();

}

void set first name (std::string view new first) {

copy 1f shared();
person ->set first name (new_first);

// Repeat for last name

}

private:

shared ptr< person> person
std: :make shared< person>();

1f shared
if (person .use count() > 1)
person = std::make shared< person> (*person);

C- Copy on Write structs

struct person

{
std::string get first name() const {
return person ->get first name();
}
void set first name (std::string view new first) ({
copy 1f shared();
person ->set first name (new first);
}
// Repeat for last name
private:

struct person;
static assert (std::1s copy constructible v< person>);

std: :shared ptr< person> person
= std::make shared< person>();

void copy 1f shared() {
1f (person .use count() > 1)
person = std::make shared< person> (*person);

}i

- Each person has its own
shared_ptr instance

e This is never shared

- As soon as a non-const function is
called, a unique copy is made

- Theinternal __person may be
shared, but that's fine as there will
only be readers

81

C- Copy on Write structs

Only works if there are no pointers or references to
O person

» send enforces this when passed to a thread

- Delete operator new to avoid heap allocations
- Delete operatoré& to avoid taking the address
Doesn’t stop references

Doesn't stop references/pointers when used as d
member in another object

- Would require viral checking/static analysis

struct person

{
[/ ...

// Wrapped person functions

//...

}i

O \/utable Value Semantics

- HylO's thread safety comes from avoiding shared state
. Objects are mutable within a function - local reasoning
« Similar to Swift with only struct types

. Implemented efficiently

@ Review

- send trait introduces an “isolation boundary” between threads

- Objects can only be copied or moved between them
. sync trait tells the compiler an object is data-race free
- And is implicitly send
. These traits need to be checked recursively for all members
» C++23 can not do this
.« C++26 reflection should enable this checking
. Lifetime safety is inherently intertwined with thread safety
. Solved in other languages with borrow checking or mutable value semantics
- We need to encapsulate pointers in value types to ensure they're not exposed to abuse

. C++26 Reflection generation (and future metaclasses) can make this simple

84

@ [.1mitations

- Not the most efficient

- E.g. mutex wraps the whole class, not individual members
- Can arc, cow or mutex metaclasses be inherited?
- It any original functions were virtual, this would break protections e.g. cow, mutex
- Derived classes could possibly inherit the metaclasses?
- Could only work on non-virtual classes
- Could be disabled by adding final to the generated class
- Very early days!

- Need implementation experience

85

@ concerns

- Bakes data-race safety and lifetime management in to the type

- May not be suitable for every use case
- Could pay performance cost for simple, single thread uses
- Not the most efficient (borrow checking)
- Great success in existing languages e.g. Swift
« Not "C++"7

- Contradicts “Don’t pay for what you don't use”

86

Sync & Send Actors

Low-level High-level

SR O &

ACtOors

High-level

ACtOors

High-level

3 Swilt Actors

lactor |Person var p = Person();
{
private var first _name: String = ""; awalt p.set first _name (new_first: "Dave")
print (await p.get_first_name())

func set_first _name (new_first: String)

{
first name = new_fT1irst;
}
func get_first name() —> String
{
return first name
}

ACtOrS

metaclass proposed syntax

'

class person[::::::]
{
public:
person() = default;
std::string get_first_name() const
{
return first_name;
}
void set _first_name (std::string new_first)
{
first _name = new_fTirst;
}
// Repeat for last_name
private:
std::string first_name, last_name;
¥

auto get_scheduler()

d ACJ[O]_/S { static exec::static_thread _pool pool(1);

return pool.get_scheduler();

class person]
{
public:
std::string get_first _name() const
void set first name (std::string new_first)
private.
mutable _ _person person;
b

' ACTOT'S

std::println ("\t\t\t\tmain tid: {}", std::this_thread::get_id());

person p;
std::println ("Name: {}", |p.get_first_name()] ;

std::thread t ([&]

p.set_first_name ("Dave");
e A (Name:

p.get_first_name());

STd..prin

-

{
‘ std::println ("\t\t\t\thread tid: {}", std::this_thread::get_id());
I

main tid: 134711587358592

get tid: 134711584224832
Name:

thread tid: 126536174790208

set tid: 134711584224832

get tid: 134711584224832

Name: Dave

S Actors

std::string get _first_name() const

{

auto sender = stdexec::then (stdexec::schedule (get scheduler()),

[this] { return person.get first name();

auto [ret] = stdexec::sync wait (sender).value();
return ret;

})

' ACTOrs as co-routines

exec: :task<std::string> get_first _name() const

{
auto sender = stdexec::then (stdexec::schedule (get scheduler()),
[this] { return person.get first name(); });
}

std::string first_name =person.get_first_name();

ACTOrs as co-routines

exec: :task<std::string> get_first _name() const

{

co return co awalt stdexec::then (stdexec::schedule (get scheduler()),
[this] { return person.get first name(); });

std::string first _name = co_await person.get _first name();

ACTOrs as co-routines

exec: :task<std::string> get_first _name() const
{

[this] { return person.get first name(); });
}

exec::task<void> set_first_name (std::string new_first)

{

[this, =]
{ return person.set_first name (new_first); });

3

actor Person
{
private var first name: String = "";
func set_first _name (n: String) {
first_name = n;
¥
func get_first_name() —-> String {
return first _name
I3
¥

C

struct person(actor)

var p = Person();

await p.set _first name (new first: "Dave")
print (await p.get_first_name())

{
std::string get _first name() const {
return first_name;
}
void set first name (std::string n) {
first_name = n;
}
private:
std::string first_name;
Fi
person p;

co_await p.set _first_name ("Dave");
std::print (co_await p.get_first_name());

G Actors Problems

- Thread/Lifetime safety issues with function arguments

- assert the arguments are send?

- Reflect on the lambda type to ensure it's send?

- Forward arguments like we did for safe_thread?

exec::task<void> set _first name (std::string_view new_first)

{

co_return co_await stdexec::then (stdexec::schedule (get_scheduler()),
[this, =]
{ return person.set_first_name (new_first); });:

99

G Actors Problems

. |In practice may need different pools

. Serialises all actors on to a single threaa

- Could use “Annotations for Reflection” P3394

. Different pool tags

. Different schedular types

auto get_scheduler()

{
static exec::static_thread _pool pool(1);
return pool.get_scheduler();

I3

struct [[=LowPriority]] person(actor)
[/ -

struct LowPriority_tag;

temp late<typename PoolType>
auto get_scheduler()

{
static exec::static_thread _pool pool(1);
// 1nit low-priority
return pool.get_scheduler();

I3

struct [[=MainActor]] person(actor)
// ..

temp late<typename PoolType>
auto get_main_scheduler()

{

static exec::run_loop loop {};
// Needs to be dispatched by main thread

return loop.get_scheduler();

100

G Actors Problems

- Huge overhead to gueue every operation on a thread

- Re-entrant functions should execute synchronously

exec::task<void> set_first_name (std::string_view new_first)

{

co_return co_await stdexec::then (stdexec::schedule (get_scheduler()),
[this, =]
{ return person.set_first _name (new_first); });

101

Run-time bata Race Detection

@ _

Existing otrategy: [san

- Only available in clang and gcc .« Extremely heavyweight
(no Visual Studio support)

« 5-15x slower execution

» Requires separate running | |
- O-10X INCrease iNn mMemory usage

- Mutually exclusive with other
sanitisers (ASan, UBSan etc.)

 2-3X iNcrease in binary size

« Moderate increase in

» Only as good as test coverage
compilation time

. Fuzzing can help

103

Lightwelght Data Race Detection

No Readers Active Active
No Writers Reader Writer

Read

No race No race
Enter

Write

No race
Enter

104

Cl 1ghtwelgnt Data Race Detection

void read_started (check _state& state) struct check state

{ {
++state.num_readers; // must be first std::atomic<size t> num_readers { 0 };
std::atomic<bool> is writing { false };

if (state.is _writing) b
std::terminate();
// read during active write

}
void write started (check state& state)
{
// must be first void read_ended (check_state& state)
if (state.is_writing.exchange (true)) 1
std::terminate(); ——state.num_readers;
// write during active write I3
if (state.num_readers > 0) void write_ended (check_state& state)
std::terminate(); 1 | o
// write during active read \ state.1s_writing = false;
}

105

Cl Ightwelgnt Data .

enum class check_type
{
read,
write

b

template<check_type type>
struct scoped_check
{
scoped_check (check state& check state)
: state (check state)

{
if constexpr (type == check_type::read)
read_started (state);
else
write started (state);
I3
~scoped_check()
{
if constexpr (type == check_type::read)
read_ended (state);
else
write ended (state);
I3

check _state& state;

&

Race .

Detection

106

C- Wrapped Data Race Detection

data race checker metaclass

'

struct personl(data_race_checker)

{
std::string get_first _name() const
{
return first _name;
s
void set _first _name (std::string_view new_first)
{
first _name = new_first;
I3
// Repeat for last_name
private:
std::string first_name, last_name;
¥

struct person

{

std::string get_first name() const

{
scoped_check<check_type::read> _ (check_state);
CTU) C _._l .v‘ ;

}

void set_first _name (std::string view new_first)

{
scoped_check<check_type::write> _ (check_state);
person_.set_T1rst_hame (new_T.1rT ’

}

// Repeat for last_name

private:
struct __person;
Derson _person ;

mutable check state check state;

b

107

23 Containers library [containers]

S t d C O]:]_ta-‘ ‘ ' e]_/S 23.2 Requirements [container.requirements]
23.2.3 Container data races [containerrequirements.dataraces]

1 6 Lib . t d t . 1 For purposes of avoiding data races ([res.on.data.races]), implementations shall consider the following functions to be
raI 9 ln ro uc lOn const: begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at and, ex-

cept in associative or unordered associative containers, operator|[].

16.4 Library-wide requirements
L . 2 Notwithstanding [res.on.data.races], implementations are required to avoid data races when the contents of the con-
16.4.6 Conformmg unplementatlons tained object in different elements in the same container, excepting vector<bool>, are modified concurrently.
16.4.6.10 Data race avoidance 3 [Note 1: For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed concurrently with-
. out a data race, but x[#] = 5 and *x.begin() = 10 executed concurrently can result in a data race. As an exception to the gener-
This subclause specifies requirements that implementations shall meet to prevent data rac _ : _
al rule, for a vector<bool> y,y[0@] = truecanracewithy[1l] = true.— end note]

function shall meet each requirement unless otherwise specified. Implementations may prx

other than those specified below.

A C++ standard library function shall not directly or indirectly access objects ([intro.multithread]) accessible by
threads other than the current thread unless the objects are accessed directly or indirectly via the function's argu-
ments, including this.

A C++ standard library function shall not directly or indirectly modify objects ([intro.multithread]) accessible by
threads other than the current thread unless the objects are accessed directly or indirectly via the function's non-const
arguments, including this.

[Note 1: This means, for example, that implementations can't use an object with static storage duration for internal purposes with-
out synchronization because doing so can cause a data race even in programs that do not explicitly share objects between threads.
— end note]

A C++ standard library function shall not access objects indirectly accessible via its arguments or via elements of its
container arguments except by invoking functions required by its specification on those container elements.

Operations on iterators obtained by calling a standard library container or string member function may access the un-
derlying container, but shall not modify it.

[Note 2: In particular, container operations that invalidate iterators conflict with operations on iterators associated with that con-
tainer. — end note]

Implementations may share their own internal objects between threads if the objects are not visible to users and are
protected against data races.

Unless otherwise specified, C++ standard library functions shall perform all operations solely within the current thread
if those operations have effects that are visible to users. 108

[Note 3: This allows implementations to parallelize operations if there are no visible side effects. — end note]

https://eel.is/c++draft/res.on.data.races
https://eel.is/c++draft/container.requirements.dataraces#1.sentence-1
https://eel.is/c++draft/intro.multithread
https://eel.is/c++draft/res.on.data.races#3.sentence-1

& std Containers

- A C++ standard library tunction shall not directly or indirectly
modily objects ([intromultithread |) accessible by threads
other than the current thread unless the objects are accessed

directly or indirectly via the function's non-const arguments,
ncluding this

- For purposes of avolding data races ([reson.data.races)).
Implementations shall consider the following functions to

pe const: begin, end, roedgin, rend, front, back, data, find, lower
_bound, upper _bound, equal range, at and, except in
associative or unordered associlative containers, operator| |.

109

https://eel.is/c++draft/intro.multithread
https://eel.is/c++draft/res.on.data.races#3.sentence-1
https://eel.is/c++draft/res.on.data.races
https://eel.is/c++draft/container.requirements.dataraces#1.sentence-1

& std Containers

All const membper functions can be
called concurrently py ditterent threads
On the same container

C: Avolding ABI Breaks

Sutter’s Mill

Herb Sutter on software development

My little New Year’s Week project (and
maybe one for you?)

Search ...

Follow by email

‘ Email Address ’

e : : C . Subscribe
[Updates: Clarified that an intrusive discriminator would be far beyond what most -

people mean by “C++ ABI break.” Mentioned unique addresses and common initial

sequences. Added “unknown” state for passing to opaque functions.|

Here is my little New Year’s Week project: Trying to write a small library to enable

compiler support for automatic raw union member access checking.

The problem, and what’s needed

During 2024, I started thinking: What would it take to make C/C++ union
accesses type-checked? Obviously, the ideal is to change naked union types to

something safe.(*) But because it will take time and effort for the world to adopt I'm an author and speaker, and a
programming language nerd whose focus is on

any solution that requires making source code changes, I wondered how much of enabling our program code to be both clean

the safety we might be able to get, at what overhead cost, just by recompiling and fast. I've been writing about programming 111

since 1993, usually about C++ or about

existing code in a way that instruments ordinary union objects? o .
concurrency and parallelism. I'm the designer

_%

& Avoiding A

Sreaks: Extrinsic Storage

// That's it. Here's an example:
// {

// union Test { int a; double b; };

// Test t = {42}; union_registry<>:
// std::cout << t.a; union_registry<>:
// t.b = 3.14159; union_registry<>:
// std::cout << t.b; union_registry<>:
// I3 union_registry<>:

//

:on_set_alternative(&u, 0
ron_get_alternative(&u, 0
ron_set_alternative(&u,1
:on_get_alternative(&u,1
:on_destroy(&u);

) ;
) ;
) ;
) ;

112

C: Avolding ABI Breaks: Extrinsic Storage

class data_race_registry A
static inline auto tags = extrinsic_storage<check_state>{};

public:
static inline auto get_state(voidx pobj) noexcept {
return xtags.find_or_insert(pobj);
I3

static inline auto on_destroy(void*x pobj) noexcept —> void {
tags.erase(pobj);
}

&

constexpr const _reference operator[](size type _ pos) const noexcept {

scoped_check<check_type::read> _ (data_race_registry::get_state (this)),

return x(data() + _ pos);

} 13

@ Data Races as Contract Violations

void read started (check state& state)

{
++state.num _readers;
contract _assert (! state.is _writing); // read during active write
}
void write _started (check state& state)
{
contract_assert (! state.is _writing.exchange (true)) // write during active write
contract_assert (state.num_readers == 0) // write during active read
}

constexpr const_reference operator[](size type _ pos) const noexcept {

scoped_check<check_type::read> _ (data_race_registry::get_state (this));

return x(data() + _ pos);

}

114

C: Avolding ABI Breaks: Extrinsic Storage

constexpr const_reference operator[](size_type

{
[/ .

__pos) const noexcept
pre (can_read(data _race registry::get_state (this)))

basic_string& replace(size_type posl, size type _ nl, const basic_string& _ str)

pre (can_write(data _race registry::get_state (this)))

{
[/

115

@ _

Data Race Detection

- Extremely limited

- Works on function entry/exit, not memory

. All bets are off if functions return references/pointers
« Only works on types that don't expose their memory
- Member function delegation not shown

- Could be used to check container contracts

- Use 1San!

116

-+ Profiles?

3.3. Profile: Concurrency

e Definition: no data races. No deadlocks. No races for external resources (e.g., for opening a file).

e Question: should we also deal with priority inversion, delays caused by excess contention on a
lock? Suggested initial answer: no.

e Observation: The concurrency profile is currently the least mature of the suggested profiles. It
has received essentially no work specifically related to profiles, but concurrency problems have
received intensive scrutiny in other contexts (including the Core Guidelines and MISRA++) so |
can offer a few suggestions for initial work:

o Threads: prefer jthread to thread to get fewer scope-related problems.

o Dangling pointers: consider a jthread a container and apply the usual rules for resource
lifetime (RAIl) and invalidation (§3.9).

o Aliasing: statically detect if a pointer is passed to another thread. For an initial version,
that will require restrictions on pointer manipulation in non-trivial control flows. In
general, not all aliasing can be detected statically, and we need to reject too complex
code. Defining “too complex” is essential, or we will suffer portability problems because
of compiler incompatibilities. See “Flow analysis” (§4).

o Invalidation: use unique_ptr and containers without invalidation (e.g., gsl::dyn_array)
to pass information between threads.

o Mutability: Prefer to pass (and keep) pointers to const.

o Synchronization: use scoped_lock to lessen the chance of deadlock. Look into the
possibility of statically detecting aliases in more than one thread to mutable data and
enforce the use of synchronization on access through them. Use unique_ptr combined
with protecting against aliasing across treads.

17
We need to look at lock-free programming.

LOOK Into the possibllity of statically detecting aliases
In more than one thread to mutable data

-+ Profiles?

3.3. Profile: Concurrency

e Definition: no data races. No deadlocks. No races for external resources (e.g., for opening a file).

e Question: should we also deal with priority inversion, delays caused by excess contention on a
lock? Suggested initial answer: no.

e Observation: The concurrency profile is currently the least mature of the suggested profiles. It
has received essentially no work specifically related to profiles, but concurrency problems have
received intensive scrutiny in other contexts (including the Core Guidelines and MISRA++) so |
can offer a few suggestions for initial work:

o Threads: prefer jthread to thread to get fewer scope-related problems.

o Dangling pointers: consider a jthread a container and apply the usual rules for resource
lifetime (RAIl) and invalidation (§3.9).

o Aliasing: statically detect if a pointer is passed to another thread. For an initial version,
that will require restrictions on pointer manipulation in non-trivial control flows. In
general, not all aliasing can be detected statically, and we need to reject too complex
code. Defining “too complex” is essential, or we will suffer portability problems because
of compiler incompatibilities. See “Flow analysis” (§4).

o Invalidation: use unique_ptr and containers without invalidation (e.g., gsl::dyn_array)
to pass information between threads.

o Mutability: Prefer to pass (and keep) pointers to const.

o Synchronization: use scoped_lock to lessen the chance of deadlock. Look into the
possibility of statically detecting aliases in more than one thread to mutable data and
enforce the use of synchronization on access through them. Use unique_ptr combined
with protecting against aliasing across treads.

119
We need to look at lock-free programming.

|
[)

Mutability: Prefer to pass (and keep) pointers to const

120

-+ Profiles?

3.3. Profile: Concurrency

e Definition: no data races. No deadlocks. No races for external resources (e.g., for opening a file).

e Question: should we also deal with priority inversion, delays caused by excess contention on a
lock? Suggested initial answer: no.

e Observation: The concurrency profile is currently the least mature of the suggested profiles. It
has received essentially no work specifically related to profiles, but concurrency problems have
received intensive scrutiny in other contexts (including the Core Guidelines and MISRA++) so |
can offer a few suggestions for initial work:

o Threads: prefer jthread to thread to get fewer scope-related problems.

o Dangling pointers: consider a jthread a container and apply the usual rules for resource
lifetime (RAIl) and invalidation (§3.9).

o Aliasing: statically detect if a pointer is passed to another thread. For an initial version,
that will require restrictions on pointer manipulation in non-trivial control flows. In
general, not all aliasing can be detected statically, and we need to reject too complex
code. Defining “too complex” is essential, or we will suffer portability problems because
of compiler incompatibilities. See “Flow analysis” (§4).

o Invalidation: use unique_ptr and containers without invalidation (e.g., gsl::dyn_array)
to pass information between threads.

o Mutability: Prefer to pass (and keep) pointers to const.

o Synchronization: use scoped_lock to lessen the chance of deadlock. Look into the
possibility of statically detecting aliases in more than one thread to mutable data and
enforce the use of synchronization on access through them. Use unique_ptr combined
with protecting against aliasing across treads.

121
We need to look at lock-free programming.

|
[)

Aliasing: statically detect if a pointer is
passed to another thread. <snip>

122

Conclusion

- C++ needs a way to identity “isolation boundaries”

- |.e. send
- This introduces strong aliasing and lifetime requirements
- This is not compatible with existing pointers/references

- Reflection can help us write in the styles of other languages which have better
thread safety

 Safely encapsulates pointers

. For “C++ performance” and “Don‘'t pay for what you don't use” we need borrow
checking:

» Sean Baxter: “Safe C++” wg?21.link/P3390

123

http://wg21.link/P3390

What Can C++ Learn About Thread
Safety From Other Languages

David Rowland
) X @drowaudio

Questions? e
Slides/video:

drowaudio.qgithub.io/presentations

1&11
. O

=]

https://drowaudio.github.io/presentations

